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Abstract

Let hp , 1 < p < ∞, be the best �p-approximation of the element h ∈ Rn from a proper affine subspace
K of Rn, h /∈ K , and let h∗∞ denote the strict uniform approximation of h from K. We prove that there are a
vector � ∈ Rn\{0} and a real number a, 0�a�1, such that

hp = h∗∞ + ap

p − 1
� + �p ,

for all p > 1, where �p ∈ Rn with ‖�p‖ = o
(
ap/p

)
.
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1. Introduction

For 1�p�∞, we consider the linear space Rn endowed with the usual p-norm. For convenience
we will denote ‖·‖ := ‖·‖∞. Also we will use the functional notation x = (x(1), x(2), . . . , x(n))

to denote the element x ∈ Rn.
Let K �= ∅ be a subset of Rn. For h ∈ Rn \ K and 1�p�∞ we say that hp ∈ K is a best

�p-approximation of h from K if

‖hp − h‖p �‖f − h‖p for all f ∈ K.
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Throughout this paper, K will denote a proper affine subspace of Rn and, without loss of generality,
we will assume that h = 0 and 0 /∈ K . In this context, the existence of hp is guaranteed. Moreover,
there exists a unique best �p-approximation if 1 < p < ∞. In the case p = ∞ we will say that
h∞ is a best uniform approximation of 0 from K. In general, the unicity of the best uniform
approximation is not guaranteed. However, a unique “strict uniform approximation", h∗∞, can be
defined [3,8]. For convenience we will write K = h∗∞ + V , where V is a proper linear subspace
of Rn. It is well known (see for instance [9]) that hp, 1 < p < ∞, is the best �p-approximation
of 0 from K if and only if

n∑
j=1

v(j)
∣∣hp(j)

∣∣p−1 sgn(hp(j)) = 0 for all v ∈ V. (1)

It is also known, [1,4,8], that limp→∞ hp = h∗∞. This convergence is called Polya algorithm
and occurs at a rate no worse than 1/p (see [2,4]). In [6] it is proved that for all r ∈ N there are
�l ∈ V , 1� l�r , such that

hp = h∗∞ + �1

p − 1
+ �2

(p − 1)2 + · · · + �r

(p − 1)r
+ �(r)

p , (2)

where �(r)
p ∈ Rn and ‖�(r)

p ‖ = O (
p−r−1

)
. In [4] the authors give a necessary and sufficient

condition on K for

p ‖hp − h∗∞‖ → 0 as p → ∞ (3)

and in [7] it is proved that if (3) holds then there are real numbers a, L1 and L2, with 0�a < 1
and L1, L2 > 0, such that

L1a
p �p ‖hp − h∗∞‖�L2 ap (4)

for all p�1. In particular, (4) implies that if (3) holds, then we have an exponential rate of
convergence of hp to h∗∞ as p → ∞ and so the asymptotic expansion in (2) follows immediately
with �l = 0, 1� l�r , for all r ∈ N. The aim of this paper is to complete the results in [4,6,7]
giving an asymptotic expression of hp in the general case. More precisely, we prove that there
does exist a vector � ∈ V , � �= 0, such that

hp = h∗∞ + ap

p − 1
� + �p, (5)

where �p ∈ V and ‖�p‖ = o (ap/p).
In the case 0 < a < 1, taking into account (4), we immediately deduce that p‖hp − h∗∞‖/ap

is bounded. However, it is not a trivial question to show that the limit p(hp − h∗∞)/ap exists as
p → ∞. This justifies the present paper.

On the other hand, since there is trivially an expression of the form (5) for some � and �p in V ,
the only part requiring proof is the error estimate for �p. Also observe that (5) is a particular case
of (2) for a = 1. However, in the case 0�a < 1 expression (5) is specially interesting because
(2) does not give any information about hp.

2. Notation and preliminary results

Without loss of generality, we will assume that ‖h∗∞‖ = 1, h∗∞(j)�0, 1�j �n, and that the
coordinates of h∗∞ are in decreasing ordering. Let 1 = d1 > d2 > · · · > ds �0 denote all the
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different values of h∗∞(j), 1�j �n, and let {Jl}sl=1 be the partition of J := {1, 2, . . . , n} defined
by Jl := {j ∈ J : h∗∞(j) = dl}, 1� l�s.

If J ′ ⊆ J we will denote by ‖ · ‖J ′ the restriction of the norm ‖ · ‖ to the set of indices on J ′.
Note that it is possible to choose a basis B = {v1, v2, . . . , vm} of V and a partition {Ik}sk=1 of

I := {1, 2, . . . , m} such that for all i ∈ Ik , 1�k�s,

(p1) vi(j) = 0, ∀ j ∈ Jl , 1� l < k,
(p2) vi(j) �= 0 for some j ∈ Jk .

Note that Ik can be empty for some k, 1�k�s. However, as we will notice later, the case ds > 0
or Is = ∅ simplify the proof of the results in this paper. For this reason, and to consider the more
general situation, we will assume that ds = 0 and Is �= ∅. We will use the following results.

Theorem 1 (Quesada [7, Corollary 1]). Let

a = max
1� l,k � s−1

⎧⎨⎩dl/dk :
∑
j∈Jl

vi(j) �= 0 for some i ∈ Ik

⎫⎬⎭ , (6)

where a is assumed to be 0 if
∑

j∈Jl
vi(j) = 0 for all i ∈ Ik , 1�k, l�s − 1. Then there are

L1, L2 > 0 such that

L1 ap �p ‖hp − h∗∞‖�L2 ap for all p�1. (7)

Lemma 2. If {xp} is a sequence of real numbers such that xp → 0 as p → ∞, then(
1 + xp

p

)p

= 1 + xp + Rp,

where Rp = O(x2
p).

Proof. The proof follows immediately from the application of the Taylor’s formula to the function
�(z) = (1 + z/p)p at z = 0. �

3. Asymptotic expression of the best �p-approximations

Since hp → h∗∞ as p → ∞, then hp(j) > 0 for all j ∈ Jl , 1� l�s − 1, and p large enough.
So, without loss of generality, we will assume that hp(j) > 0 for all j ∈ Jl , 1�j �s − 1.

Theorem 3. Let K be a proper affine subspace of Rn, 0 /∈ K . For 1 < p < ∞, let hp denote the
best �p-approximation of 0 from K and let h∗∞ be the strict uniform approximation. Let a be the
real number defined in (6). Then there is a vector � ∈ Rn, � �= 0, such that

hp = h∗∞ + ap

p − 1
� + �p, (8)

where �p ∈ Rn and ‖�p‖ = o(ap/p).

Proof. Write K = h∗∞ + V , where V is a proper linear subspace of Rn, and consider the basis
B = {v1, v2, . . . , vm} defined as above. By the conditions (p1) and (p2) and the definition of a in
(6), we have 0�a�1. We will consider three cases.
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(a) If a = 0, then by (7), hp = h∗∞ for all p�1 and (8) follows trivially for all � ∈ Rn and
�p = 0 ∈ Rn.

(b) If a = 1, then (8) is a particular case of (2), with �p = O(1/p2). So, to conclude the proof,
we only need to prove that � �= 0. Indeed, since a = 1, there exist k ∈ {1, 2, . . . , s −1} and i ∈ Ik

such that
∑

j∈Jk
vi(j) �= 0. Applying (1) with v = vi we have∑

j∈J

vi(j)|hp(j)|p−1 sgn(hp(j)) = 0.

Since vi ∈ Ik , taking into account (p1) and (8) the above equation can be written as

∑
j∈Jk

vi(j)

(
dk + �(j)

p − 1
+ �p(j)

)p−1

+
s∑

l>k

∑
j∈Jl

vi(j)
∣∣hp(j)

∣∣p−1 sgn(hp(j)) = 0.

Dividing by d
p−1
k and letting p → ∞ we obtain

∑
j∈Jk

vi(j)e�(j)/dk = 0 and hence �(j) �= 0
for some j ∈ Jk .

(c) If 0 < a < 1, then a = dl0/dk0 for some 1�k0 < l0 < s and
∑

j∈Jl0
vi(j) �= 0 for

some i ∈ Ik0 . On the other hand, by Theorem 1, p ‖hp − h∗∞‖/ap is bounded. So, we can take a
subsequence pk → ∞ such that (pk − 1)(hpk

− h∗∞)/apk converges. Define

� := lim
k→∞(pk − 1)(hpk

− h∗∞)/apk ∈ V.

By (7) � �= 0. Then we can write

hp = h∗∞ + ap

p − 1
� + �p, (9)

where �p := hp−h∗∞−� ap/(p−1) ∈ V . Note that p ‖�p‖/ap is also bounded and pk ‖�pk
‖/apk

→ 0 as k → ∞. Now we prove that �p = o (ap/p). Indeed, suppose to the contrary that there

exists a subsequence p′
k → ∞ such that (p′

k − 1)�p′
k
/ap′

k → u �= 0. Since u ∈ V , applying (1)
with v = u we have∑

j∈J

u(j)
∣∣hp(j)

∣∣p−1 sgn(hp(j)) = 0. (10)

Let r0 = min
{
l ∈ {1, 2, . . . , s} : u(j) �= 0 for some j ∈ Jl

}
. Note that u ∈ span{vi : i ∈

Ik, r0 �k�s}. Now we consider two cases:
(c.1) If 1�r0 �s − 1, then dividing (10) by d

p−1
r0 and keeping in mind (9) we obtain∑

j∈Jr0

u(j)

(
1 + �(j)

dr0

ap

p − 1
+ �p(j)

dr0

)p−1

+
s∑

l=r0+1

(
dl

dr0

)p−1 ∑
j∈Jl

u(j)

(
1 + �(j)

dl

ap

p − 1
+ �p(j)

dl

)p−1

+
∑
j∈Js

u(j)

∣∣∣∣hp(j)

dr0

∣∣∣∣p−1

sgn(hp(j)) = 0.
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Now, applying Lemma 2 we get

∑
j∈Jr0

u(j)

(
1 + �(j)

dr0

ap + (p − 1)
�p(j)

dr0

+ Rp(j)

)

+
s−1∑

l=r0+1

(
dl

dr0

)p−1 ∑
j∈Jl

u(j)

(
1 + �(j)

dl

ap + (p − 1)
�p(j)

dl

+ Rp(j)

)

+
∑
j∈Js

u(j)

∣∣∣∣hp(j)

dr0

∣∣∣∣p−1

sgn(hp(j)) = 0,

where Rp(j) = O (
a2p

)
for all j ∈ Jl , r0 � l�s − 1.

If r0 � l�s − 1 and dl/dr0 > a, then dl/dr > a for all r �r0. Hence, from the definition of a,∑
j∈Jl

vi(j) = 0 for all i ∈ Ir with r �r0 and hence
∑

j∈Jl
u(j) = 0. So, dividing by ap and

rearranging terms we can write the equality above as

1

dr0

∑
j∈Jr0

u(j)�(j) + 1

a

∑
j∈Jl0

u(j) + p − 1

ap dr0

∑
j∈Jr0

u(j)�p(j) + R̃p = 0, (11)

where R̃p = O (ap) and l0 is the possible index in {r0 + 1, . . . , s − 1} such that dl0/dr0 = a.
Particularizing (11) for p = pk and taking limits as k → ∞, we have

1

dr0

∑
j∈Jr0

u(j)�(j) + 1

a

∑
j∈Jl0

u(j) = 0.

In similar way, letting k → ∞ in (11) with p = p′
k and taking into account the equality above,

we obtain∑
j∈Jr0

u(j)2 = 0.

A contradiction.
(c.2) If r0 = s, then multiplying (10) by (p − 1)p−1/ap(p−1) we get

∑
j∈Ĵs

u(j)

∣∣∣∣�(j) + (p − 1)�p(j)

ap

∣∣∣∣p−1

sgn

(
�(j) + (p − 1)�p(j)

ap

)

+
∑
j∈J 0

s

u(j)

∣∣∣∣ (p − 1)�p(j)

ap

∣∣∣∣p−1

sgn(�p(j)) = 0, (12)

where Ĵs := {j ∈ Js : u(j) �(j) �= 0} and J 0
s = Js \ Ĵs .

Note that Ĵs �= ∅. Otherwise, particularizing (12) for p = p′
k we get a contradiction for k large

enough because sgn(�p′
k
(j)) = sgn(u(j)) if u(j) �= 0.
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Let Ĵ �
s := {j ∈ Ĵs : |�(j)| = ‖�‖Ĵs

}. Dividing (12) for ‖�‖p−1
Ĵs

, we have∑
j∈Ĵ �

s

u(j)

∣∣∣∣1 + (p − 1)�p(j)

ap �(j)

∣∣∣∣p−1

sgn

(
�(j) + (p − 1)�p(j)

ap

)

+
∑

j∈Ĵs\Ĵ �
s

u(j)

(
�(j)

‖�‖Ĵs

)p−1 ∣∣∣∣1 + (p − 1)�p(j)

�(j)ap

∣∣∣∣p−1

sgn

(
�(j) + (p − 1)�p(j)

ap

)

+
∑
j∈J 0

s

u(j)

∣∣∣∣∣ (p − 1)�p(j)

ap ‖�‖Ĵs

∣∣∣∣∣
p−1

sgn(�p(j)) = 0. (13)

Since (pk − 1)�pk
(j)/apk → 0 as k → ∞, there exists a real number �, 0 < � < 1, such that

for k large enough

min
j∈Ĵ �

s

∣∣∣∣1 + (pk − 1)�pk
(j)

apk�(j)

∣∣∣∣ > � > max
j∈Ĵs\Ĵ �

s

�(j)

‖�‖Ĵs

∣∣∣∣1 + (pk − 1)�pk
(j)

apk �(j)

∣∣∣∣ .
Now, taking into account that

−
∑
j∈Ĵ �

s

|u(j)|
�pk−1

∣∣∣∣1 + (pk − 1)�pk
(j)

apk �(j)

∣∣∣∣pk−1

< −
∑
j∈Ĵ �

s

|u(j)|

and

lim
k→∞

|u(j)|
�pk−1

(
�(j)

‖�‖Ĵs

)pk−1 ∣∣∣∣1 + (pk − 1)�pk
(j)

�(j)apk

∣∣∣∣pk−1

= 0

for all j ∈ Ĵs \ Ĵ �
s , we deduce from (13) that there exists j0 ∈ Ĵ �

s such that u(j0)�(j0) > 0. But,
if j ∈ Ĵ �

s and u(j)�(j) > 0, then

lim
k→∞

∣∣∣∣∣1 +
(p′

k − 1)�p′
k
(j)

ap′
k�(j)

∣∣∣∣∣ = 1 + u(j)

�(j)
> 1

and sgn
(
�(j) + (p′

k − 1)�p′
k
(j)/ap′

k

)
= sgn(u(j)) for k large enough.

On the other hand, if j ∈ Ĵs with u(j)�(j) < 0 and |u(j)|� |�(j)| then

lim
k→∞

∣∣∣∣∣1 +
(p′

k − 1)�p′
k
(j)

ap′
k�(j)

∣∣∣∣∣ =
∣∣∣∣1 + u(j)

�(j)

∣∣∣∣ < 1.

Finally, if j ∈ Ĵs with u(j)�(j) < 0 and |u(j)| > |�(j)| then

sgn
(
�(j) + (p′

k − 1)�p′
k
(j)/ap′

k

)
= sgn(u(j)).

So, taking limits in (13) as k → ∞, with p = p′
k , we get a contradiction. �

Remark 4. Recently, in [5] it is proved that estimation (4) of the order of convergence of the
Polya algorithm also holds if K is a finite affine subspace of �1(N). A slight modification of the
techniques used in this paper shows that Theorem 3 is also valid in this new context.
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