

Available online at www.sciencedirect.com

JOURNAL OF Approximation Theory

Journal of Approximation Theory 14 (2006) 147-153

www.elsevier.com/locate/jat

Asymptotic expression of the linear discrete best ℓ_p -approximation $\stackrel{\text{the}}{\simeq}$

J. Fernández-Ochoa, J. Martínez-Moreno, J.M. Quesada*

Departamento de Matemáticas, Universidad de Jaén, 23071 Jaén, Spain

Received 4 August 2005; accepted 21 December 2005

Communicated by G. Nürnberger Available online 10 February 2006

Abstract

Let h_p , $1 , be the best <math>\ell_p$ -approximation of the element $h \in \mathbb{R}^n$ from a proper affine subspace K of \mathbb{R}^n , $h \notin K$, and let h_{∞}^* denote the strict uniform approximation of h from K. We prove that there are a vector $\alpha \in \mathbb{R}^n \setminus \{0\}$ and a real number $a, 0 \le a \le 1$, such that

$$h_p = h_{\infty}^* + \frac{a^p}{p-1} \alpha + \gamma_p,$$

for all p > 1, where $\gamma_p \in \mathbb{R}^n$ with $\|\gamma_p\| = o(a^p/p)$. © 2006 Elsevier Inc. All rights reserved.

Keywords: Strict best approximation; Rate of convergence; Polya algorithm; Asymptotic expansion

1. Introduction

For $1 \le p \le \infty$, we consider the linear space \mathbb{R}^n endowed with the usual *p*-norm. For convenience we will denote $\|\cdot\| := \|\cdot\|_{\infty}$. Also we will use the functional notation $x = (x(1), x(2), \dots, x(n))$ to denote the element $x \in \mathbb{R}^n$.

Let $K \neq \emptyset$ be a subset of \mathbb{R}^n . For $h \in \mathbb{R}^n \setminus K$ and $1 \leq p \leq \infty$ we say that $h_p \in K$ is a best ℓ_p -approximation of h from K if

 $\|h_p - h\|_p \leq \|f - h\|_p \quad \text{for all } f \in K.$

0021-9045/\$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jat.2005.12.002

[☆] Partially supported by Junta de Andalucía, Research Groups FQM268, FQM178 and by Ministerio de Ciencia y Tecnología, Project BFM2003-05794.

^{*} Corresponding author. Fax: 34 953212141.

E-mail addresses: jquesada@ujaen.es (J.M. Quesada), jmmoreno@ujaen.es (J. Martínez-Moreno).

Throughout this paper, *K* will denote a proper affine subspace of \mathbb{R}^n and, without loss of generality, we will assume that h = 0 and $0 \notin K$. In this context, the existence of h_p is guaranteed. Moreover, there exists a unique best ℓ_p -approximation if $1 . In the case <math>p = \infty$ we will say that h_∞ is a best uniform approximation of 0 from *K*. In general, the unicity of the best uniform approximation is not guaranteed. However, a unique "strict uniform approximation", h_∞^* , can be defined [3,8]. For convenience we will write $K = h_\infty^* + \mathcal{V}$, where \mathcal{V} is a proper linear subspace of \mathbb{R}^n . It is well known (see for instance [9]) that h_p , $1 , is the best <math>\ell_p$ -approximation of 0 from *K* if and only if

$$\sum_{j=1}^{n} v(j) \left| h_p(j) \right|^{p-1} \operatorname{sgn}(h_p(j)) = 0 \quad \text{for all } v \in \mathcal{V}.$$

$$\tag{1}$$

It is also known, [1,4,8], that $\lim_{p\to\infty} h_p = h_{\infty}^*$. This convergence is called Polya algorithm and occurs at a rate no worse than 1/p (see [2,4]). In [6] it is proved that for all $r \in \mathbb{N}$ there are $\alpha_l \in \mathcal{V}, 1 \leq l \leq r$, such that

$$h_p = h_{\infty}^* + \frac{\alpha_1}{p-1} + \frac{\alpha_2}{(p-1)^2} + \dots + \frac{\alpha_r}{(p-1)^r} + \gamma_p^{(r)},$$
(2)

where $\gamma_p^{(r)} \in \mathbb{R}^n$ and $\|\gamma_p^{(r)}\| = \mathcal{O}(p^{-r-1})$. In [4] the authors give a necessary and sufficient condition on *K* for

$$p \|h_p - h_\infty^*\| \to 0 \quad \text{as } p \to \infty$$
 (3)

and in [7] it is proved that if (3) holds then there are real numbers a, L_1 and L_2 , with $0 \le a < 1$ and L_1 , $L_2 > 0$, such that

$$L_1 a^p \leqslant p \, \|h_p - h_\infty^*\| \leqslant L_2 \, a^p \tag{4}$$

for all $p \ge 1$. In particular, (4) implies that if (3) holds, then we have an exponential rate of convergence of h_p to h_{∞}^* as $p \to \infty$ and so the asymptotic expansion in (2) follows immediately with $\alpha_l = 0, 1 \le l \le r$, for all $r \in \mathbb{N}$. The aim of this paper is to complete the results in [4,6,7] giving an asymptotic expression of h_p in the general case. More precisely, we prove that there does exist a vector $\alpha \in \mathcal{V}, \alpha \neq 0$, such that

$$h_p = h_\infty^* + \frac{a^p}{p-1} \alpha + \gamma_p, \tag{5}$$

where $\gamma_p \in \mathcal{V}$ and $\|\gamma_p\| = o(a^p/p)$.

In the case 0 < a < 1, taking into account (4), we immediately deduce that $p||h_p - h_{\infty}^*||/a^p$ is bounded. However, it is not a trivial question to show that the limit $p(h_p - h_{\infty}^*)/a^p$ exists as $p \to \infty$. This justifies the present paper.

On the other hand, since there is trivially an expression of the form (5) for some α and γ_p in \mathcal{V} , the only part requiring proof is the error estimate for γ_p . Also observe that (5) is a particular case of (2) for a = 1. However, in the case $0 \le a < 1$ expression (5) is specially interesting because (2) does not give any information about h_p .

2. Notation and preliminary results

Without loss of generality, we will assume that $||h_{\infty}^*|| = 1$, $h_{\infty}^*(j) \ge 0$, $1 \le j \le n$, and that the coordinates of h_{∞}^* are in decreasing ordering. Let $1 = d_1 > d_2 > \cdots > d_s \ge 0$ denote all the

different values of $h_{\infty}^*(j)$, $1 \le j \le n$, and let $\{J_l\}_{l=1}^s$ be the partition of $J := \{1, 2, ..., n\}$ defined by $J_l := \{j \in J : h_{\infty}^*(j) = d_l\}, 1 \le l \le s$.

If $J' \subseteq J$ we will denote by $\|\cdot\|_{J'}$ the restriction of the norm $\|\cdot\|$ to the set of indices on J'. Note that it is possible to choose a basis $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ of \mathcal{V} and a partition $\{I_k\}_{k=1}^s$ of $I := \{1, 2, \dots, m\}$ such that for all $i \in I_k, 1 \leq k \leq s$,

(p1) $v_i(j) = 0, \forall j \in J_l, 1 \leq l < k,$ (p2) $v_i(j) \neq 0$ for some $j \in J_k$.

Note that I_k can be empty for some k, $1 \le k \le s$. However, as we will notice later, the case $d_s > 0$ or $I_s = \emptyset$ simplify the proof of the results in this paper. For this reason, and to consider the more general situation, we will assume that $d_s = 0$ and $I_s \ne \emptyset$. We will use the following results.

Theorem 1 (Quesada [7, Corollary 1]). Let

$$a = \max_{1 \leq l,k \leq s-1} \left\{ d_l/d_k : \sum_{j \in J_l} v_i(j) \neq 0 \text{ for some } i \in I_k \right\},\tag{6}$$

where a is assumed to be 0 if $\sum_{j \in J_l} v_i(j) = 0$ for all $i \in I_k$, $1 \leq k, l \leq s - 1$. Then there are $L_1, L_2 > 0$ such that

$$L_1 a^p \leqslant p \|h_p - h_\infty^*\| \leqslant L_2 a^p \quad \text{for all } p \ge 1.$$

$$\tag{7}$$

Lemma 2. If $\{x_p\}$ is a sequence of real numbers such that $x_p \to 0$ as $p \to \infty$, then

$$\left(1+\frac{x_p}{p}\right)^p = 1+x_p+R_p,$$

where $R_p = \mathcal{O}(x_p^2)$.

Proof. The proof follows immediately from the application of the Taylor's formula to the function $\varphi(z) = (1 + z/p)^p$ at z = 0. \Box

3. Asymptotic expression of the best ℓ_p -approximations

Since $h_p \to h_{\infty}^*$ as $p \to \infty$, then $h_p(j) > 0$ for all $j \in J_l$, $1 \le l \le s - 1$, and p large enough. So, without loss of generality, we will assume that $h_p(j) > 0$ for all $j \in J_l$, $1 \le j \le s - 1$.

Theorem 3. Let K be a proper affine subspace of \mathbb{R}^n , $0 \notin K$. For $1 , let <math>h_p$ denote the best ℓ_p -approximation of 0 from K and let h_{∞}^* be the strict uniform approximation. Let a be the real number defined in (6). Then there is a vector $\alpha \in \mathbb{R}^n$, $\alpha \neq 0$, such that

$$h_p = h_\infty^* + \frac{a^p}{p-1} \alpha + \gamma_p, \tag{8}$$

where $\gamma_p \in \mathbb{R}^n$ and $\|\gamma_p\| = o(a^p/p)$.

Proof. Write $K = h_{\infty}^* + \mathcal{V}$, where \mathcal{V} is a proper linear subspace of \mathbb{R}^n , and consider the basis $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ defined as above. By the conditions (p1) and (p2) and the definition of *a* in (6), we have $0 \le a \le 1$. We will consider three cases.

(a) If a = 0, then by (7), $h_p = h_{\infty}^*$ for all $p \ge 1$ and (8) follows trivially for all $\alpha \in \mathbb{R}^n$ and $\gamma_p = 0 \in \mathbb{R}^n$.

(b) If a = 1, then (8) is a particular case of (2), with $\gamma_p = \mathcal{O}(1/p^2)$. So, to conclude the proof, we only need to prove that $\alpha \neq 0$. Indeed, since a = 1, there exist $k \in \{1, 2, ..., s-1\}$ and $i \in I_k$ such that $\sum_{j \in J_k} v_i(j) \neq 0$. Applying (1) with $v = v_i$ we have

$$\sum_{j\in J} v_i(j) |h_p(j)|^{p-1} \operatorname{sgn}(h_p(j)) = 0.$$

Since $v_i \in I_k$, taking into account (p1) and (8) the above equation can be written as

$$\sum_{j \in J_k} v_i(j) \left(d_k + \frac{\alpha(j)}{p-1} + \gamma_p(j) \right)^{p-1} + \sum_{l>k}^s \sum_{j \in J_l} v_i(j) \left| h_p(j) \right|^{p-1} \operatorname{sgn}(h_p(j)) = 0.$$

Dividing by d_k^{p-1} and letting $p \to \infty$ we obtain $\sum_{j \in J_k} v_i(j) e^{\alpha(j)/d_k} = 0$ and hence $\alpha(j) \neq 0$ for some $j \in J_k$.

(c) If 0 < a < 1, then $a = d_{l_0}/d_{k_0}$ for some $1 \le k_0 < l_0 < s$ and $\sum_{j \in J_{l_0}} v_i(j) \neq 0$ for some $i \in I_{k_0}$. On the other hand, by Theorem 1, $p ||h_p - h_{\infty}^*||/a^p$ is bounded. So, we can take a subsequence $p_k \to \infty$ such that $(p_k - 1)(h_{p_k} - h_{\infty}^*)/a^{p_k}$ converges. Define

$$\alpha := \lim_{k \to \infty} (p_k - 1)(h_{p_k} - h_{\infty}^*)/a^{p_k} \in \mathcal{V}.$$

By (7) $\alpha \neq 0$. Then we can write

$$h_p = h_\infty^* + \frac{a^p}{p-1} \alpha + \gamma_p, \tag{9}$$

where $\gamma_p := h_p - h_{\infty}^* - \alpha a^p / (p-1) \in \mathcal{V}$. Note that $p \|\gamma_p\| / a^p$ is also bounded and $p_k \|\gamma_{p_k}\| / a^{p_k} \to 0$ as $k \to \infty$. Now we prove that $\gamma_p = o(a^p/p)$. Indeed, suppose to the contrary that there exists a subsequence $p'_k \to \infty$ such that $(p'_k - 1)\gamma_{p'_k} / a^{p'_k} \to u \neq 0$. Since $u \in \mathcal{V}$, applying (1) with v = u we have

$$\sum_{j \in J} u(j) \left| h_p(j) \right|^{p-1} \operatorname{sgn}(h_p(j)) = 0.$$
(10)

Let $r_0 = \min \{ l \in \{1, 2, ..., s\} : u(j) \neq 0 \text{ for some } j \in J_l \}$. Note that $u \in \operatorname{span}\{v_i : i \in I_k, r_0 \leq k \leq s\}$. Now we consider two cases:

(c.1) If $1 \leq r_0 \leq s - 1$, then dividing (10) by $d_{r_0}^{p-1}$ and keeping in mind (9) we obtain

$$\sum_{j \in J_{r_0}} u(j) \left(1 + \frac{\alpha(j)}{d_{r_0}} \frac{a^p}{p-1} + \frac{\gamma_p(j)}{d_{r_0}} \right)^{p-1} \\ + \sum_{l=r_0+1}^s \left(\frac{d_l}{d_{r_0}} \right)^{p-1} \sum_{j \in J_l} u(j) \left(1 + \frac{\alpha(j)}{d_l} \frac{a^p}{p-1} + \frac{\gamma_p(j)}{d_l} \right)^{p-1} \\ + \sum_{j \in J_s} u(j) \left| \frac{h_p(j)}{d_{r_0}} \right|^{p-1} \operatorname{sgn}(h_p(j)) = 0.$$

Now, applying Lemma 2 we get

$$\begin{split} &\sum_{j \in J_{r_0}} u(j) \left(1 + \frac{\alpha(j)}{d_{r_0}} a^p + (p-1) \frac{\gamma_p(j)}{d_{r_0}} + R_p(j) \right) \\ &+ \sum_{l=r_0+1}^{s-1} \left(\frac{d_l}{d_{r_0}} \right)^{p-1} \sum_{j \in J_l} u(j) \left(1 + \frac{\alpha(j)}{d_l} a^p + (p-1) \frac{\gamma_p(j)}{d_l} + R_p(j) \right) \\ &+ \sum_{j \in J_s} u(j) \left| \frac{h_p(j)}{d_{r_0}} \right|^{p-1} \operatorname{sgn}(h_p(j)) = 0, \end{split}$$

where $R_p(j) = \mathcal{O}(a^{2p})$ for all $j \in J_l, r_0 \leq l \leq s - 1$.

If $r_0 \leq l \leq s - 1$ and $d_l/d_{r_0} > a$, then $d_l/d_r > a$ for all $r \geq r_0$. Hence, from the definition of a, $\sum_{j \in J_l} v_i(j) = 0$ for all $i \in I_r$ with $r \ge r_0$ and hence $\sum_{j \in J_l} u(j) = 0$. So, dividing by a^p and rearranging terms we can write the equality above as

$$\frac{1}{d_{r_0}} \sum_{j \in J_{r_0}} u(j)\alpha(j) + \frac{1}{a} \sum_{j \in J_{l_0}} u(j) + \frac{p-1}{a^p d_{r_0}} \sum_{j \in J_{r_0}} u(j)\gamma_p(j) + \widetilde{R}_p = 0,$$
(11)

where $\widetilde{R}_p = \mathcal{O}(a^p)$ and l_0 is the possible index in $\{r_0 + 1, \dots, s - 1\}$ such that $d_{l_0}/d_{r_0} = a$. Particularizing (11) for $p = p_k$ and taking limits as $k \to \infty$, we have

$$\frac{1}{d_{r_0}}\sum_{j\in J_{r_0}}u(j)\alpha(j) + \frac{1}{a}\sum_{j\in J_{l_0}}u(j) = 0.$$

In similar way, letting $k \to \infty$ in (11) with $p = p'_k$ and taking into account the equality above, we obtain

$$\sum_{j\in J_{r_0}} u(j)^2 = 0.$$

A contradiction.

(c.2) If $r_0 = s$, then multiplying (10) by $(p-1)^{p-1}/a^{p(p-1)}$ we get

$$\sum_{j\in\widehat{J}_{s}}u(j)\left|\alpha(j)+\frac{(p-1)\gamma_{p}(j)}{a^{p}}\right|^{p-1}\operatorname{sgn}\left(\alpha(j)+\frac{(p-1)\gamma_{p}(j)}{a^{p}}\right) +\sum_{j\in J_{s}^{0}}u(j)\left|\frac{(p-1)\gamma_{p}(j)}{a^{p}}\right|^{p-1}\operatorname{sgn}(\gamma_{p}(j))=0,$$
(12)

where $\widehat{J}_s := \{j \in J_s : u(j) \ \alpha(j) \neq 0\}$ and $J_s^0 = J_s \setminus \widehat{J}_s$. Note that $\widehat{J}_s \neq \emptyset$. Otherwise, particularizing (12) for $p = p'_k$ we get a contradiction for *k* large enough because $\operatorname{sgn}(\gamma_{p'_k}(j)) = \operatorname{sgn}(u(j))$ if $u(j) \neq 0$.

Let
$$\widehat{J}_{s}^{\alpha} := \{j \in \widehat{J}_{s} : |\alpha(j)| = \|\alpha\|_{\widehat{J}_{s}}\}$$
. Dividing (12) for $\|\alpha\|_{\widehat{J}_{s}}^{p-1}$, we have

$$\sum_{j \in \widehat{J}_{s}^{\alpha}} u(j) \left| 1 + \frac{(p-1)\gamma_{p}(j)}{a^{p} \alpha(j)} \right|^{p-1} \operatorname{sgn} \left(\alpha(j) + \frac{(p-1)\gamma_{p}(j)}{a^{p}} \right)$$

$$+ \sum_{j \in \widehat{J}_{s} \setminus \widehat{J}_{s}^{\alpha}} u(j) \left(\frac{\alpha(j)}{\|\alpha\|_{\widehat{J}_{s}}} \right)^{p-1} \left| 1 + \frac{(p-1)\gamma_{p}(j)}{\alpha(j)a^{p}} \right|^{p-1} \operatorname{sgn} \left(\alpha(j) + \frac{(p-1)\gamma_{p}(j)}{a^{p}} \right)$$

$$+ \sum_{j \in J_{s}^{0}} u(j) \left| \frac{(p-1)\gamma_{p}(j)}{a^{p} \|\alpha\|_{\widehat{J}_{s}}} \right|^{p-1} \operatorname{sgn}(\gamma_{p}(j)) = 0.$$
(13)

Since $(p_k - 1)\gamma_{p_k}(j)/a^{p_k} \to 0$ as $k \to \infty$, there exists a real number β , $0 < \beta < 1$, such that for k large enough

$$\min_{j\in \widehat{J}_s^{\alpha}} \left| 1 + \frac{(p_k - 1)\gamma_{p_k}(j)}{a^{p_k}\alpha(j)} \right| > \beta > \max_{j\in \widehat{J}_s \setminus \widehat{J}_s^{\alpha}} \frac{\alpha(j)}{\|\alpha\|_{\widehat{J}_s}} \left| 1 + \frac{(p_k - 1)\gamma_{p_k}(j)}{a^{p_k}\alpha(j)} \right|.$$

Now, taking into account that

$$-\sum_{j\in \widehat{J}_{s}^{\alpha}}\frac{|u(j)|}{\beta^{p_{k}-1}}\left|1+\frac{(p_{k}-1)\gamma_{p_{k}}(j)}{a^{p_{k}}\alpha(j)}\right|^{p_{k}-1}<-\sum_{j\in \widehat{J}_{s}^{\alpha}}|u(j)|$$

and

$$\lim_{k \to \infty} \frac{|u(j)|}{\beta^{p_k - 1}} \left(\frac{\alpha(j)}{\|\alpha\|_{\widehat{J}_s}} \right)^{p_k - 1} \left| 1 + \frac{(p_k - 1)\gamma_{p_k}(j)}{\alpha(j)a^{p_k}} \right|^{p_k - 1} = 0$$

for all $j \in \widehat{J}_s \setminus \widehat{J}_s^{\alpha}$, we deduce from (13) that there exists $j_0 \in \widehat{J}_s^{\alpha}$ such that $u(j_0)\alpha(j_0) > 0$. But, if $j \in \widehat{J}_s^{\alpha}$ and $u(j)\alpha(j) > 0$, then

$$\lim_{k \to \infty} \left| 1 + \frac{(p'_k - 1)\gamma_{p'_k}(j)}{a^{p'_k}\alpha(j)} \right| = 1 + \frac{u(j)}{\alpha(j)} > 1$$

and $\operatorname{sgn}\left(\alpha(j) + (p'_k - 1)\gamma_{p'_k}(j)/a^{p'_k}\right) = \operatorname{sgn}(u(j))$ for *k* large enough. On the other hand, if $j \in \widehat{J}_s$ with $u(j)\alpha(j) < 0$ and $|u(j)| \leq |\alpha(j)|$ then

$$\lim_{k \to \infty} \left| 1 + \frac{(p'_k - 1)\gamma_{p'_k}(j)}{a^{p'_k}\alpha(j)} \right| = \left| 1 + \frac{u(j)}{\alpha(j)} \right| < 1.$$

Finally, if $j \in \widehat{J}_s$ with $u(j)\alpha(j) < 0$ and $|u(j)| > |\alpha(j)|$ then

$$\operatorname{sgn}\left(\alpha(j) + (p'_k - 1)\gamma_{p'_k}(j)/a^{p'_k}\right) = \operatorname{sgn}(u(j)).$$

So, taking limits in (13) as $k \to \infty$, with $p = p'_k$, we get a contradiction. \Box

Remark 4. Recently, in [5] it is proved that estimation (4) of the order of convergence of the Polya algorithm also holds if K is a finite affine subspace of $\ell_1(\mathbb{N})$. A slight modification of the techniques used in this paper shows that Theorem 3 is also valid in this new context.

References

- [1] J. Descloux, Approximations in L^p and Chebychev approximations, J. Soc. Ind. Appl. Math. 11 (1963) 1017–1026.
- [2] A. Egger, R. Huotari, Rate of convergence of the discrete Polya algorithm, J. Approx. Theory 60 (1990) 24-30.
- [3] M. Marano, Strict approximation on closed convex sets, Approx. Theory Appl. 6 (1990) 99–109.
- [4] M. Marano, J. Navas, The linear discrete Polya algorithm, Appl. Math. Lett. 8 (6) (1995) 25-28.
- [5] J.M. Quesada, J. Fernández-Ochoa, J. Martínez-Moreno, J. Bustamante, The Polya algorithm in sequence spaces, J. Approx. Theory 135-2 (2005) 245–257.
- [6] J.M. Quesada, J. Martínez-Moreno, J. Navas, Asymptotic behaviour of the best lp-approximations from affine subspaces, J. Approx. Theory 118-2 (2002) 275–289.
- [7] J.M. Quesada, J. Navas, Rate of convergence of the linear discrete Polya algorithm, J. Approx. Theory 110 (2001) 109–119.
- [8] J.R. Rice, Thebychefff approximation in a compact metric space, Bull. Amer. Math. Soc. 68 (1962) 405-410.
- [9] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer, Berlin, 1970.