Asymptotic expression of the linear discrete best ℓ_{p}-approximation ${ }^{2}$

J. Fernández-Ochoa, J. Martínez-Moreno, J.M. Quesada*
Departamento de Matemáticas, Universidad de Jaén, 23071 Jaén, Spain

Received 4 August 2005; accepted 21 December 2005
Communicated by G. Nürnberger
Available online 10 February 2006

Abstract

Let $h_{p}, 1<p<\infty$, be the best ℓ_{p}-approximation of the element $h \in \mathbb{R}^{n}$ from a proper affine subspace K of $\mathbb{R}^{n}, h \notin K$, and let h_{∞}^{*} denote the strict uniform approximation of h from K. We prove that there are a vector $\alpha \in \mathbb{R}^{n} \backslash\{0\}$ and a real number $a, 0 \leqslant a \leqslant 1$, such that

$$
h_{p}=h_{\infty}^{*}+\frac{a^{p}}{p-1} \alpha+\gamma_{p},
$$

for all $p>1$, where $\gamma_{p} \in \mathbb{R}^{n}$ with $\left\|\gamma_{p}\right\|=o\left(a^{p} / p\right)$.
© 2006 Elsevier Inc. All rights reserved.
Keywords: Strict best approximation; Rate of convergence; Polya algorithm; Asymptotic expansion

1. Introduction

For $1 \leqslant p \leqslant \infty$, we consider the linear space \mathbb{R}^{n} endowed with the usual p-norm. For convenience we will denote $\|\cdot\|:=\|\cdot\|_{\infty}$. Also we will use the functional notation $x=(x(1), x(2), \ldots, x(n))$ to denote the element $x \in \mathbb{R}^{n}$.

Let $K \neq \emptyset$ be a subset of \mathbb{R}^{n}. For $h \in \mathbb{R}^{n} \backslash K$ and $1 \leqslant p \leqslant \infty$ we say that $h_{p} \in K$ is a best ℓ_{p}-approximation of h from K if

$$
\left\|h_{p}-h\right\|_{p} \leqslant\|f-h\|_{p} \quad \text { for all } f \in K .
$$

[^0]Throughout this paper, K will denote a proper affine subspace of \mathbb{R}^{n} and, without loss of generality, we will assume that $h=0$ and $0 \notin K$. In this context, the existence of h_{p} is guaranteed. Moreover, there exists a unique best ℓ_{p}-approximation if $1<p<\infty$. In the case $p=\infty$ we will say that h_{∞} is a best uniform approximation of 0 from K. In general, the unicity of the best uniform approximation is not guaranteed. However, a unique "strict uniform approximation", h_{∞}^{*}, can be defined $[3,8]$. For convenience we will write $K=h_{\infty}^{*}+\mathcal{V}$, where \mathcal{V} is a proper linear subspace of \mathbb{R}^{n}. It is well known (see for instance [9]) that $h_{p}, 1<p<\infty$, is the best ℓ_{p}-approximation of 0 from K if and only if

$$
\begin{equation*}
\sum_{j=1}^{n} v(j)\left|h_{p}(j)\right|^{p-1} \operatorname{sgn}\left(h_{p}(j)\right)=0 \quad \text { for all } v \in \mathcal{V} \tag{1}
\end{equation*}
$$

It is also known, $[1,4,8]$, that $\lim _{p \rightarrow \infty} h_{p}=h_{\infty}^{*}$. This convergence is called Polya algorithm and occurs at a rate no worse than $1 / p$ (see [2,4]). In [6] it is proved that for all $r \in \mathbb{N}$ there are $\alpha_{l} \in \mathcal{V}, 1 \leqslant l \leqslant r$, such that

$$
\begin{equation*}
h_{p}=h_{\infty}^{*}+\frac{\alpha_{1}}{p-1}+\frac{\alpha_{2}}{(p-1)^{2}}+\cdots+\frac{\alpha_{r}}{(p-1)^{r}}+\gamma_{p}^{(r)}, \tag{2}
\end{equation*}
$$

where $\gamma_{p}^{(r)} \in \mathbb{R}^{n}$ and $\left\|\gamma_{p}^{(r)}\right\|=\mathcal{O}\left(p^{-r-1}\right)$. In [4] the authors give a necessary and sufficient condition on K for

$$
\begin{equation*}
p\left\|h_{p}-h_{\infty}^{*}\right\| \rightarrow 0 \quad \text { as } p \rightarrow \infty \tag{3}
\end{equation*}
$$

and in [7] it is proved that if (3) holds then there are real numbers a, L_{1} and L_{2}, with $0 \leqslant a<1$ and $L_{1}, L_{2}>0$, such that

$$
\begin{equation*}
L_{1} a^{p} \leqslant p\left\|h_{p}-h_{\infty}^{*}\right\| \leqslant L_{2} a^{p} \tag{4}
\end{equation*}
$$

for all $p \geqslant 1$. In particular, (4) implies that if (3) holds, then we have an exponential rate of convergence of h_{p} to h_{∞}^{*} as $p \rightarrow \infty$ and so the asymptotic expansion in (2) follows immediately with $\alpha_{l}=0,1 \leqslant l \leqslant r$, for all $r \in \mathbb{N}$. The aim of this paper is to complete the results in $[4,6,7]$ giving an asymptotic expression of h_{p} in the general case. More precisely, we prove that there does exist a vector $\alpha \in \mathcal{V}, \alpha \neq 0$, such that

$$
\begin{equation*}
h_{p}=h_{\infty}^{*}+\frac{a^{p}}{p-1} \alpha+\gamma_{p} \tag{5}
\end{equation*}
$$

where $\gamma_{p} \in \mathcal{V}$ and $\left\|\gamma_{p}\right\|=o\left(a^{p} / p\right)$.
In the case $0<a<1$, taking into account (4), we immediately deduce that $p\left\|h_{p}-h_{\infty}^{*}\right\| / a^{p}$ is bounded. However, it is not a trivial question to show that the limit $p\left(h_{p}-h_{\infty}^{*}\right) / a^{p}$ exists as $p \rightarrow \infty$. This justifies the present paper.

On the other hand, since there is trivially an expression of the form (5) for some α and γ_{p} in \mathcal{V}, the only part requiring proof is the error estimate for γ_{p}. Also observe that (5) is a particular case of (2) for $a=1$. However, in the case $0 \leqslant a<1$ expression (5) is specially interesting because (2) does not give any information about h_{p}.

2. Notation and preliminary results

Without loss of generality, we will assume that $\left\|h_{\infty}^{*}\right\|=1, h_{\infty}^{*}(j) \geqslant 0,1 \leqslant j \leqslant n$, and that the coordinates of h_{∞}^{*} are in decreasing ordering. Let $1=d_{1}>d_{2}>\cdots>d_{s} \geqslant 0$ denote all the
different values of $h_{\infty}^{*}(j), 1 \leqslant j \leqslant n$, and let $\left\{J_{l}\right\}_{l=1}^{s}$ be the partition of $J:=\{1,2, \ldots, n\}$ defined by $J_{l}:=\left\{j \in J: h_{\infty}^{*}(j)=d_{l}\right\}, 1 \leqslant l \leqslant s$.

If $J^{\prime} \subseteq J$ we will denote by $\|\cdot\|_{J^{\prime}}$ the restriction of the norm $\|\cdot\|$ to the set of indices on J^{\prime}.
Note that it is possible to choose a basis $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ of \mathcal{V} and a partition $\left\{I_{k}\right\}_{k=1}^{s}$ of $I:=\{1,2, \ldots, m\}$ such that for all $i \in I_{k}, 1 \leqslant k \leqslant s$,
(p1) $v_{i}(j)=0, \forall j \in J_{l}, 1 \leqslant l<k$,
(p2) $v_{i}(j) \neq 0$ for some $j \in J_{k}$.
Note that I_{k} can be empty for some $k, 1 \leqslant k \leqslant s$. However, as we will notice later, the case $d_{s}>0$ or $I_{s}=\emptyset$ simplify the proof of the results in this paper. For this reason, and to consider the more general situation, we will assume that $d_{s}=0$ and $I_{s} \neq \emptyset$. We will use the following results.

Theorem 1 (Quesada [7, Corollary 1]). Let

$$
\begin{equation*}
a=\max _{1 \leqslant l, k \leqslant s-1}\left\{d_{l} / d_{k}: \sum_{j \in J_{l}} v_{i}(j) \neq 0 \text { for some } i \in I_{k}\right\} \text {, } \tag{6}
\end{equation*}
$$

where a is assumed to be 0 if $\sum_{j \in J_{l}} v_{i}(j)=0$ for all $i \in I_{k}, 1 \leqslant k, l \leqslant s-1$. Then there are $L_{1}, L_{2}>0$ such that

$$
\begin{equation*}
L_{1} a^{p} \leqslant p\left\|h_{p}-h_{\infty}^{*}\right\| \leqslant L_{2} a^{p} \quad \text { for all } p \geqslant 1 . \tag{7}
\end{equation*}
$$

Lemma 2. If $\left\{x_{p}\right\}$ is a sequence of real numbers such that $x_{p} \rightarrow 0$ as $p \rightarrow \infty$, then

$$
\left(1+\frac{x_{p}}{p}\right)^{p}=1+x_{p}+R_{p}
$$

where $R_{p}=\mathcal{O}\left(x_{p}^{2}\right)$.
Proof. The proof follows immediately from the application of the Taylor's formula to the function $\varphi(z)=(1+z / p)^{p}$ at $z=0$.

3. Asymptotic expression of the best ℓ_{p}-approximations

Since $h_{p} \rightarrow h_{\infty}^{*}$ as $p \rightarrow \infty$, then $h_{p}(j)>0$ for all $j \in J_{l}, 1 \leqslant l \leqslant s-1$, and p large enough. So, without loss of generality, we will assume that $h_{p}(j)>0$ for all $j \in J_{l}, 1 \leqslant j \leqslant s-1$.

Theorem 3. Let K be a proper affine subspace of $\mathbb{R}^{n}, 0 \notin K$. For $1<p<\infty$, let h_{p} denote the best ℓ_{p}-approximation of 0 from K and let h_{∞}^{*} be the strict uniform approximation. Let a be the real number defined in (6). Then there is a vector $\alpha \in \mathbb{R}^{n}, \alpha \neq 0$, such that

$$
\begin{equation*}
h_{p}=h_{\infty}^{*}+\frac{a^{p}}{p-1} \alpha+\gamma_{p} \tag{8}
\end{equation*}
$$

where $\gamma_{p} \in \mathbb{R}^{n}$ and $\left\|\gamma_{p}\right\|=o\left(a^{p} / p\right)$.
Proof. Write $K=h_{\infty}^{*}+\mathcal{V}$, where \mathcal{V} is a proper linear subspace of \mathbb{R}^{n}, and consider the basis $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ defined as above. By the conditions (p1) and (p2) and the definition of a in (6), we have $0 \leqslant a \leqslant 1$. We will consider three cases.
(a) If $a=0$, then by (7), $h_{p}=h_{\infty}^{*}$ for all $p \geqslant 1$ and (8) follows trivially for all $\alpha \in \mathbb{R}^{n}$ and $\gamma_{p}=0 \in \mathbb{R}^{n}$.
(b) If $a=1$, then (8) is a particular case of (2), with $\gamma_{p}=\mathcal{O}\left(1 / p^{2}\right)$. So, to conclude the proof, we only need to prove that $\alpha \neq 0$. Indeed, since $a=1$, there exist $k \in\{1,2, \ldots, s-1\}$ and $i \in I_{k}$ such that $\sum_{j \in J_{k}} v_{i}(j) \neq 0$. Applying (1) with $v=v_{i}$ we have

$$
\sum_{j \in J} v_{i}(j)\left|h_{p}(j)\right|^{p-1} \operatorname{sgn}\left(h_{p}(j)\right)=0
$$

Since $v_{i} \in I_{k}$, taking into account (p1) and (8) the above equation can be written as

$$
\sum_{j \in J_{k}} v_{i}(j)\left(d_{k}+\frac{\alpha(j)}{p-1}+\gamma_{p}(j)\right)^{p-1}+\sum_{l>k}^{s} \sum_{j \in J_{l}} v_{i}(j)\left|h_{p}(j)\right|^{p-1} \operatorname{sgn}\left(h_{p}(j)\right)=0
$$

Dividing by d_{k}^{p-1} and letting $p \rightarrow \infty$ we obtain $\sum_{j \in J_{k}} v_{i}(j) e^{\alpha(j) / d_{k}}=0$ and hence $\alpha(j) \neq 0$ for some $j \in J_{k}$.
(c) If $0<a<1$, then $a=d_{l_{0}} / d_{k_{0}}$ for some $1 \leqslant k_{0}<l_{0}<s$ and $\sum_{j \in J_{l_{0}}} v_{i}(j) \neq 0$ for some $i \in I_{k_{0}}$. On the other hand, by Theorem $1, p\left\|h_{p}-h_{\infty}^{*}\right\| / a^{p}$ is bounded. So, we can take a subsequence $p_{k} \rightarrow \infty$ such that $\left(p_{k}-1\right)\left(h_{p_{k}}-h_{\infty}^{*}\right) / a^{p_{k}}$ converges. Define

$$
\alpha:=\lim _{k \rightarrow \infty}\left(p_{k}-1\right)\left(h_{p_{k}}-h_{\infty}^{*}\right) / a^{p_{k}} \in \mathcal{V} .
$$

By (7) $\alpha \neq 0$. Then we can write

$$
\begin{equation*}
h_{p}=h_{\infty}^{*}+\frac{a^{p}}{p-1} \alpha+\gamma_{p} \tag{9}
\end{equation*}
$$

where $\gamma_{p}:=h_{p}-h_{\infty}^{*}-\alpha a^{p} /(p-1) \in \mathcal{V}$. Note that $p\left\|\gamma_{p}\right\| / a^{p}$ is also bounded and $p_{k}\left\|\gamma_{p_{k}}\right\| / a^{p_{k}}$ $\rightarrow 0$ as $k \rightarrow \infty$. Now we prove that $\gamma_{p}=o\left(a^{p} / p\right)$. Indeed, suppose to the contrary that there exists a subsequence $p_{k}^{\prime} \rightarrow \infty$ such that $\left(p_{k}^{\prime}-1\right) \gamma_{p_{k}^{\prime}} / a^{p_{k}^{\prime}} \rightarrow u \neq 0$. Since $u \in \mathcal{V}$, applying (1) with $v=u$ we have

$$
\begin{equation*}
\sum_{j \in J} u(j)\left|h_{p}(j)\right|^{p-1} \operatorname{sgn}\left(h_{p}(j)\right)=0 \tag{10}
\end{equation*}
$$

Let $r_{0}=\min \left\{l \in\{1,2, \ldots, s\}: u(j) \neq 0\right.$ for some $\left.j \in J_{l}\right\}$. Note that $u \in \operatorname{span}\left\{v_{i}: i \in\right.$ $\left.I_{k}, r_{0} \leqslant k \leqslant s\right\}$. Now we consider two cases:
(c.1) If $1 \leqslant r_{0} \leqslant s-1$, then dividing (10) by $d_{r_{0}}^{p-1}$ and keeping in mind (9) we obtain

$$
\begin{aligned}
& \sum_{j \in J_{r_{0}}} u(j)\left(1+\frac{\alpha(j)}{d_{r_{0}}} \frac{a^{p}}{p-1}+\frac{\gamma_{p}(j)}{d_{r_{0}}}\right)^{p-1} \\
& \quad+\sum_{l=r_{0}+1}^{s}\left(\frac{d_{l}}{d_{r_{0}}}\right)^{p-1} \sum_{j \in J_{l}} u(j)\left(1+\frac{\alpha(j)}{d_{l}} \frac{a^{p}}{p-1}+\frac{\gamma_{p}(j)}{d_{l}}\right)^{p-1} \\
& \quad+\sum_{j \in J_{s}} u(j)\left|\frac{h_{p}(j)}{d_{r_{0}}}\right|^{p-1} \operatorname{sgn}\left(h_{p}(j)\right)=0 .
\end{aligned}
$$

Now, applying Lemma 2 we get

$$
\begin{aligned}
& \sum_{j \in J_{r_{0}}} u(j)\left(1+\frac{\alpha(j)}{d_{r_{0}}} a^{p}+(p-1) \frac{\gamma_{p}(j)}{d_{r_{0}}}+R_{p}(j)\right) \\
& \quad+\sum_{l=r_{0}+1}^{s-1}\left(\frac{d_{l}}{d_{r_{0}}}\right)^{p-1} \sum_{j \in J_{l}} u(j)\left(1+\frac{\alpha(j)}{d_{l}} a^{p}+(p-1) \frac{\gamma_{p}(j)}{d_{l}}+R_{p}(j)\right) \\
& \quad+\sum_{j \in J_{s}} u(j)\left|\frac{h_{p}(j)}{d_{r_{0}}}\right|^{p-1} \operatorname{sgn}\left(h_{p}(j)\right)=0,
\end{aligned}
$$

where $R_{p}(j)=\mathcal{O}\left(a^{2 p}\right)$ for all $j \in J_{l}, r_{0} \leqslant l \leqslant s-1$.
If $r_{0} \leqslant l \leqslant s-1$ and $d_{l} / d_{r_{0}}>a$, then $d_{l} / d_{r}>a$ for all $r \geqslant r_{0}$. Hence, from the definition of a, $\sum_{j \in J_{l}} v_{i}(j)=0$ for all $i \in I_{r}$ with $r \geqslant r_{0}$ and hence $\sum_{j \in J_{l}} u(j)=0$. So, dividing by a^{p} and rearranging terms we can write the equality above as

$$
\begin{equation*}
\frac{1}{d_{r_{0}}} \sum_{j \in J_{r_{0}}} u(j) \alpha(j)+\frac{1}{a} \sum_{j \in J_{l_{0}}} u(j)+\frac{p-1}{a^{p} d_{r_{0}}} \sum_{j \in J_{r_{0}}} u(j) \gamma_{p}(j)+\widetilde{R}_{p}=0, \tag{11}
\end{equation*}
$$

where $\widetilde{R}_{p}=\mathcal{O}\left(a^{p}\right)$ and l_{0} is the possible index in $\left\{r_{0}+1, \ldots, s-1\right\}$ such that $d_{l_{0}} / d_{r_{0}}=a$.
Particularizing (11) for $p=p_{k}$ and taking limits as $k \rightarrow \infty$, we have

$$
\frac{1}{d_{r_{0}}} \sum_{j \in J_{r_{0}}} u(j) \alpha(j)+\frac{1}{a} \sum_{j \in J_{l_{0}}} u(j)=0
$$

In similar way, letting $k \rightarrow \infty$ in (11) with $p=p_{k}^{\prime}$ and taking into account the equality above, we obtain

$$
\sum_{j \in J_{r_{0}}} u(j)^{2}=0
$$

A contradiction.
(c.2) If $r_{0}=s$, then multiplying (10) by $(p-1)^{p-1} / a^{p(p-1)}$ we get

$$
\begin{align*}
& \sum_{j \in \widehat{J}_{s}} u(j)\left|\alpha(j)+\frac{(p-1) \gamma_{p}(j)}{a^{p}}\right|^{p-1} \operatorname{sgn}\left(\alpha(j)+\frac{(p-1) \gamma_{p}(j)}{a^{p}}\right) \\
& \quad+\sum_{j \in J_{s}^{0}} u(j)\left|\frac{(p-1) \gamma_{p}(j)}{a^{p}}\right|^{p-1} \operatorname{sgn}\left(\gamma_{p}(j)\right)=0, \tag{12}
\end{align*}
$$

where $\widehat{J}_{s}:=\left\{j \in J_{s}: u(j) \alpha(j) \neq 0\right\}$ and $J_{s}^{0}=J_{s} \backslash \widehat{J_{s}}$.
Note that $\widehat{J}_{s} \neq \emptyset$. Otherwise, particularizing (12) for $p=p_{k}^{\prime}$ we get a contradiction for k large enough because $\operatorname{sgn}\left(\gamma_{p_{k}^{\prime}}(j)\right)=\operatorname{sgn}(u(j))$ if $u(j) \neq 0$.

Let $\widehat{J}_{s}^{\alpha}:=\left\{j \in \widehat{J}_{s}:|\alpha(j)|=\|\alpha\|_{\widehat{J}_{s}}\right\}$. Dividing (12) for $\|\alpha\|_{\widehat{J}_{s}}^{p-1}$, we have

$$
\begin{align*}
& \sum_{j \in \widehat{J}_{s}^{\alpha}} u(j)\left|1+\frac{(p-1) \gamma_{p}(j)}{a^{p} \alpha(j)}\right|^{p-1} \operatorname{sgn}\left(\alpha(j)+\frac{(p-1) \gamma_{p}(j)}{a^{p}}\right) \\
& \quad+\sum_{j \in \widehat{J}_{s} \backslash \widehat{J}_{s}^{\alpha}} u(j)\left(\frac{\alpha(j)}{\|\alpha\|_{\widehat{J}_{s}}}\right)^{p-1}\left|1+\frac{(p-1) \gamma_{p}(j)}{\alpha(j) a^{p}}\right|^{p-1} \operatorname{sgn}\left(\alpha(j)+\frac{(p-1) \gamma_{p}(j)}{a^{p}}\right) \\
& \quad+\sum_{j \in J_{s}^{0}} u(j)\left|\frac{(p-1) \gamma_{p}(j)}{a^{p}\|\alpha\|_{\widehat{J}_{s}}}\right|^{p-1} \operatorname{sgn}\left(\gamma_{p}(j)\right)=0 . \tag{13}
\end{align*}
$$

Since $\left(p_{k}-1\right) \gamma_{p_{k}}(j) / a^{p_{k}} \rightarrow 0$ as $k \rightarrow \infty$, there exists a real number $\beta, 0<\beta<1$, such that for k large enough

$$
\min _{j \in \widehat{J}_{s}^{\alpha}}\left|1+\frac{\left(p_{k}-1\right) \gamma_{p_{k}}(j)}{a^{p_{k} \alpha}(j)}\right|>\beta>\max _{j \in \widehat{J}_{s} \backslash \widehat{J}_{s}^{\alpha}} \frac{\alpha(j)}{\|\alpha\|_{\widehat{J}_{s}}}\left|1+\frac{\left(p_{k}-1\right) \gamma_{p_{k}}(j)}{a^{p_{k} \alpha} \alpha(j)}\right|
$$

Now, taking into account that

$$
-\sum_{j \in \widehat{J_{s}^{\alpha}}} \frac{|u(j)|}{\beta^{p_{k}-1}}\left|1+\frac{\left(p_{k}-1\right) \gamma_{p_{k}}(j)}{a^{p_{k}} \alpha(j)}\right|^{p_{k}-1}<-\sum_{j \in \widehat{J}_{s}^{\alpha}}|u(j)|
$$

and

$$
\lim _{k \rightarrow \infty} \frac{|u(j)|}{\beta^{p_{k}-1}}\left(\frac{\alpha(j)}{\|\alpha\|_{\widehat{J}_{s}}}\right)^{p_{k}-1}\left|1+\frac{\left(p_{k}-1\right) \gamma_{p_{k}}(j)}{\alpha(j) a^{p_{k}}}\right|^{p_{k}-1}=0
$$

for all $j \in \widehat{J}_{s} \backslash \widehat{J}_{s}^{\alpha}$, we deduce from (13) that there exists $j_{0} \in \widehat{J}_{s}^{\alpha}$ such that $u\left(j_{0}\right) \alpha\left(j_{0}\right)>0$. But, if $j \in \widehat{J}_{s}^{\alpha}$ and $u(j) \alpha(j)>0$, then

$$
\lim _{k \rightarrow \infty}\left|1+\frac{\left(p_{k}^{\prime}-1\right) \gamma_{p_{k}^{\prime}}(j)}{a^{p_{k}^{\prime}} \alpha(j)}\right|=1+\frac{u(j)}{\alpha(j)}>1
$$

and $\operatorname{sgn}\left(\alpha(j)+\left(p_{k}^{\prime}-1\right) \gamma_{p_{k}^{\prime}}(j) / a^{p_{k}^{\prime}}\right)=\operatorname{sgn}(u(j))$ for k large enough.
On the other hand, if $j \in \widehat{J_{s}}$ with $u(j) \alpha(j)<0$ and $|u(j)| \leqslant|\alpha(j)|$ then

$$
\lim _{k \rightarrow \infty}\left|1+\frac{\left(p_{k}^{\prime}-1\right) \gamma_{p_{k}^{\prime}}(j)}{a^{p_{k}^{\prime}} \alpha(j)}\right|=\left|1+\frac{u(j)}{\alpha(j)}\right|<1
$$

Finally, if $j \in \widehat{J}_{S}$ with $u(j) \alpha(j)<0$ and $|u(j)|>|\alpha(j)|$ then

$$
\operatorname{sgn}\left(\alpha(j)+\left(p_{k}^{\prime}-1\right) \gamma_{p_{k}^{\prime}}(j) / a^{p_{k}^{\prime}}\right)=\operatorname{sgn}(u(j)) .
$$

So, taking limits in (13) as $k \rightarrow \infty$, with $p=p_{k}^{\prime}$, we get a contradiction.
Remark 4. Recently, in [5] it is proved that estimation (4) of the order of convergence of the Polya algorithm also holds if K is a finite affine subspace of $\ell_{1}(\mathbb{N})$. A slight modification of the techniques used in this paper shows that Theorem 3 is also valid in this new context.

References

[1] J. Descloux, Approximations in L^{p} and Chebychev approximations, J. Soc. Ind. Appl. Math. 11 (1963) 1017-1026.
[2] A. Egger, R. Huotari, Rate of convergence of the discrete Polya algorithm, J. Approx. Theory 60 (1990) 24-30.
[3] M. Marano, Strict approximation on closed convex sets, Approx. Theory Appl. 6 (1990) 99-109.
[4] M. Marano, J. Navas, The linear discrete Polya algorithm, Appl. Math. Lett. 8 (6) (1995) 25-28.
[5] J.M. Quesada, J. Fernández-Ochoa, J. Martínez-Moreno, J. Bustamante, The Polya algorithm in sequence spaces, J. Approx. Theory 135-2 (2005) 245-257.
[6] J.M. Quesada, J. Martínez-Moreno, J. Navas, Asymptotic behaviour of the best ℓ_{p}-approximations from affine subspaces, J. Approx. Theory 118-2 (2002) 275-289.
[7] J.M. Quesada, J. Navas, Rate of convergence of the linear discrete Polya algorithm, J. Approx. Theory 110 (2001) 109-119.
[8] J.R. Rice, Thebychefff approximation in a compact metric space, Bull. Amer. Math. Soc. 68 (1962) 405-410.
[9] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer, Berlin, 1970.

[^0]: ${ }^{4}$ Partially supported by Junta de Andalucía, Research Groups FQM268, FQM178 and by Ministerio de Ciencia y Tecnología, Project BFM2003-05794.

 * Corresponding author. Fax: 34953212141.

 E-mail addresses: jquesada@ujaen.es (J.M. Quesada), jmmoreno@ujaen.es (J. Martínez-Moreno).

