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Abstract

Let hip, 1 < p <00, be the best £ ,-approximation of the element 2 € R" from a proper affine subspace
Kof R", h ¢ K, and let h, denote the strict uniform approximation of 4 from K. We prove that there are a
vector o € R™\{0} and a real number a, 0 <a < 1, such that

* al
/’lp=hoo+ﬁ0{+"/p,
forall p > 1, where y,, € R" with ||y, [l =0 (a?/p).
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

For 1 < p < oo, we consider the linear space R"” endowed with the usual p-norm. For convenience
we will denote || - || := || - ||oo- Also we will use the functional notation x = (x(1), x(2), ..., x(n))
to denote the element x € R”.

Let K # () be a subset of R". For h € R" \ K and 1< p<oo we say that i, € K is a best
£ p-approximation of /& from K if

\hp —hllp,<If —hll, forall feK.
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Throughout this paper, K will denote a proper affine subspace of R and, without loss of generality,
we will assume that 2 = 0 and O ¢ K. In this context, the existence of /1, is guaranteed. Moreover,
there exists a unique best £ ,-approximation if 1 < p < oo. In the case p = oo we will say that
hs 1s a best uniform approximation of 0 from K. In general, the unicity of the best uniform
approximation is not guaranteed. However, a unique “strict uniform approximation”, 4%, can be
defined [3,8]. For convenience we will write K = h} + V), where V is a proper linear subspace
of R". It is well known (see for instance [9]) that /1,,, 1 < p < o0, is the best £,-approximation
of 0 from K if and only if

n
. 1 p—1 .
D v [hp(D]PT sen(hy(j) =0 forallv e V. (1)
j=I
It is also known, [1,4,8], that lim, o hp = h}. This convergence is called Polya algorithm

and occurs at a rate no worse than 1/p (see [2,4]). In [6] it is proved that for all r € N there are
oy € V, 1<I<r, such that

o [©%) Oy
hy=h% + - Fo —— 3\, @)
P =1 (p =12 (p—Dnr 7
where y},r ) ¢ R" and ||y§,r)|| =0 (p_’_l). In [4] the authors give a necessary and sufficient

condition on K for
pllhy —hill— 0 asp— oo 3)

and in [7] it is proved that if (3) holds then there are real numbers a, L1 and Lo, with 0<a < 1
and L, Ly > 0, such that

Lia? <pllhp —ha | <Lya? “)

for all p>1. In particular, (4) implies that if (3) holds, then we have an exponential rate of
convergence of /1, to h}, as p — oo and so the asymptotic expansion in (2) follows immediately
with oy = 0, 1 <I<r, for all r € N. The aim of this paper is to complete the results in [4,6,7]
giving an asymptotic expression of 4, in the general case. More precisely, we prove that there
does exist a vector o € V, o # 0, such that

nyo=nt (5)
P =TT Vp>

where y, € Vand ||y, |l = o (a?/p).

In the case 0 < a < 1, taking into account (4), we immediately deduce that p|lh, — h% |l/a”
is bounded. However, it is not a trivial question to show that the limit p(h, — h%,)/a? exists as
p — oo. This justifies the present paper.

On the other hand, since there is trivially an expression of the form (5) for some ocand y, in V,
the only part requiring proof is the error estimate for y,,. Also observe that (5) is a particular case
of (2) for a = 1. However, in the case 0<a < 1 expression (5) is specially interesting because
(2) does not give any information about /.

2. Notation and preliminary results

Without loss of generality, we will assume that ||} || = 1, ki (j) >0, 1< j <n, and that the
coordinates of A} are in decreasing ordering. Let | = d; > dp > --- > dg >0 denote all the
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different values of 1%, (j), 1 <j <n, and let {Jl}f:1 be the partition of J := {1, 2, ..., n} defined
by Ji:={j e J:hi(j)=d} 1<I<s.
If J' € J we will denote by || - || ;- the restriction of the norm || - || to the set of indices on J’.
Note that it is possible to choose a basis B = {v1, v, ..., vy} of V and a partition {I;};_, of
I:=1{1,2,...,m}suchthatforalli € I}, 1 <k<s,

(P vi(j) =0,VjeJy, I<I <k,
(p2) vi(j) # 0 for some j € Ji.

Note that I} can be empty for some &, 1 <k <s. However, as we will notice later, the case dy > 0
or I, = ¢} simplify the proof of the results in this paper. For this reason, and to consider the more
general situation, we will assume that d; = 0 and I 7# (). We will use the following results.

Theorem 1 (Quesada [7, Corollary 1]). Let

= di/dx : i(j) #0 i €Iy ¢, 6
a= _max_ Vdd ;vlm;«é for some i € Iy (©)
1

where a is assumed to be 0 ifZ/eJ, vi(j) = 0foralli € Iy, 1<k,l<s — 1. Then there are
Ly, Ly > 0 such that '

Lia?<plh, —hilI<Lya®” forall p>1. (7)
Lemma 2. If {x,} is a sequence of real numbers such that x, — 0 as p — oo, then
xp\’
1+-2) =1+x,+R,
p
where R, = O(xlz,).

Proof. The proof follows immediately from the application of the Taylor’s formula to the function
o) =1+z/p)Patz=0. O

3. Asymptotic expression of the best £,-approximations

Since h, — h}, as p — oo, then h,(j) > Oforall j € J;, 1 <I<s — 1, and p large enough.
So, without loss of generality, we will assume that 2, (j) > Oforall j € J;, I1<j<s — 1.

Theorem 3. Let K be a proper affine subspace of R",0 ¢ K. For 1 < p < 0o, let h), denote the
best £ ,-approximation of 0 from K and let hs, be the strict uniform approximation. Let a be the
real number defined in (6). Then there is a vector o. € R", o # 0, such that

p
p—1

h, =hk, + %+ 7y, (3)

where 7, € R" and ||y, |l = o(a”/p).
Proof. Write K = h%, + V), where V is a proper linear subspace of R”, and consider the basis

B = {vy, va, ..., v,} defined as above. By the conditions (p1) and (p2) and the definition of a in
(6), we have 0 <a < 1. We will consider three cases.
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(a) If a = 0, then by (7), h, = h%, for all p>1 and (8) follows trivially for all x € R" and
,=0eR"

(b) If a = 1, then (8) is a particular case of (2), with Vp = O(1/p?). So, to conclude the proof,
we only need to prove that o # 0. Indeed, since @ = 1, thereexistk € {1,2,...,s—1}andi € I;
such that } ;. ; vi(j) # 0. Applying (1) with v = v; we have

D vl (NIP sgnry () = 0.

jeJ

Since v; € Iy, taking into account (p1) and (8) the above equation can be written as

N

> i) <dk + ﬂ + /pm) + 2>l (DI senth, () = 0.
jeJk I>k jeJ
Dividing by d,f_l and letting p — oo we obtain Y v; (j)e* /4 = ( and hence a(j) # 0
for some j € Jg.

(©)If0 < a < 1, then a = dy,/dy, for some 1<ky < lp < s and Z;e/, v;i(j) # 0 for
some i € I,. On the other hand, by Theorem 1, p ||h, — h} ||/a? is bounded. So we can take a
subsequence py — oo such that (px — 1)(h,, — h%,)/aP* converges. Define

J€Jk

= 1im (px — 1)(hp, — h%)/aP* € V.
k— 00

By (7) o # 0. Then we can write

p

hp = o+ — 2+, ©)

wherey, 1= h) —h}, —aa?/(p—1) € V.Note that p l7,1I/a” is also bounded and pi ||y, I /a’*
— 0 as k — oo. Now we prove that 7, = o (a”/p). Indeed, suppose to the contrary that there

exists a subsequence p; — oo such that (p; — l)yp;( /a/’llc — u # 0. Since u € V, applying (1)
with v = u we have

> ul) [y (| sty () =0, (10)

jeJ

Let ro = min{l € {1,2,...,s} : u(j) # Oforsome j € J;}. Note that u € spanf{v; : i €
Ix, ro <k <s}. Now we consider two cases:
(c.) If 1<rg<s — 1, then dividing (10) by dr’(’)_1 and keeping in mind (9) we obtain

. . p—1
dr,

jGJrO dr() p _1
p—1 R o\ p—1
. a(j) a’ 7p(J)
+ Z ( ) Zu(])(l—l— +
I=ro+1 jeJ1 d p—1 " d

+Z()

JeJs

sgn(hp(j)) = 0.
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Now, applying Lemma 2 we get

> uj) (H?a"ﬂp— )y’;(’)m (1))
N ro ro
€
()
5> ( ) dou ()(Hﬂ a4+ (p - 2 ,,,-)
I=ro+1 jed !
,,m"‘ .
+ Y u(j) sgn(hp(j) =0,
JjeJs

where R, (j) = O (a?F) forall j € Jj, ro<I<s — 1.

Ifro<i<s —1andd;/d,, > a,thend;/d, > a forall r >rg. Hence, from the definition of a
ZjeJ, v;(j) = 0 forall i € I, with r >ry and hence Zje], u(j) = 0. So, dividing by a” and
rearranging terms we can write the equality above as

— Z u(ja(j) + - Z

0 jedy

p—1 PN
abdy,
jedy

an

JEhO

where 131, = O (a”) and [y is the possible index in {ro + 1, ..., s — 1} such that d;,/d,, = a.

Particularizing (11) for p = py and taking limits as k — oo, we have

— Z u(jaj) + = Z u(j) =0.

"0 jedry @ jen

In similar way, letting k — oo in (11) with p = p; and taking into account the equality above
we obtain

> u()*=o.

jed

A contradiction.

(c.2) If rg = s, then multiplying (10) by (p — 1)?~1/aP(P~D we get

(p— 1Dy, (p—1)7,())
S uh) | + % sen <cx(j>+ #)
= a a
J€Js
(p— .
+) ()‘ sgn(v,,<1>)=o, (12)
jeJ?

where J; := {j € Jy : u(j) a(j) # 0} and JO = J; \

Note that J; # (. Otherwise, particularizing (12) for p = p; we get a contradiction for k large
enough because sgn(yp;( (7)) = sgn(u(j)) if u(j) # 0.
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Let j;“ ={j e J o] = ||oc||J} Dividing (12) for ||oc||p , we have

-1 p—1 1 :
Z”(j) - (p - )7p(J) san <a(j)+(p )V,,(]))
— a(j) aP
JEJY
2D\, L 2= D (= Dy,0)
t 2O\ s ‘ T ar n(““” ar )
JjeJs\JZ¢ $
Dy, ()|
+ 3 u() ,,”aﬁ” ! sgn(y,,u»:o. (13)
jeJd

Since (px — 1)y, (j)/aP* — 0 as k — oo, there exists a real number B, 0 < B < 1, such that
for k large enough

— 1N ; . 1 .
min |1 + M‘ g max 20| D)
Jjels arko(j) jeagz ol 7 abk o(j)
Now, taking into account that
. el
[u(j)] (P — Dy, () |P* .
=il n <= 3w
pre aPko(j) —~
jely jelx
and
. . pr—1 . —1
im IM(J)ll o(j) ‘1 n (P — .1)’/pk(J) Pk :
k—o0 BPEE A\ flarl| 7; a(j)aPk

forall j € j: \ Z?‘, we deduce from (13) that there exists jy € j;“ such that u(jo)a(jo) > 0. But,
if j € J¥ and u(j)a(j) > 0, then

(Pe = D7y (D]

aPko(j)

u(j)
TE)

lim |1+ > 1

k— o0

and sgn (oc(j) + (pp — DVPi (j)/ﬂ;ﬁ) = sgn(u(j)) for k large enough.
On the other hand, if j € Z with u(j)o(j) < Oand |u(j)|<|x(j)| then
/ v (i R

(g _/1)/pk(.]) _ ‘1—{—”(],)
aPro(y) a(j)

lim |1+

k—o00

Finally, if j € j} with u(j)a(j) < 0 and |u(j)| > |«(j)| then
sen (#0) + (pf = Dy ()/a’h) = sen(u())).
So, taking limits in (13) as k — oo, with p = p,’c, we get a contradiction. [

Remark 4. Recently, in [5] it is proved that estimation (4) of the order of convergence of the
Polya algorithm also holds if K is a finite affine subspace of £1(N). A slight modification of the
techniques used in this paper shows that Theorem 3 is also valid in this new context.
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